EMPIRE XPU Tutorial 3D Design – Wilkinson Divider

Overview: Topics

- Use template
- 3D structure definition
- Shift and Mirror
- MSL Port
- SMD Resistor
- S-Parameters
- Even, odd mode

? X

µm 🤊

Step 1: Start

- Start Empire XPU
- Select Templates
- Uncheck "Calculate…"
- Set initial Line Width 410 µm
- Click OK
- File \rightarrow Save as
- Create new directory "divider"
 and save file

Comments:

The default template creates a microstrip line including ports on a TMM 10 substrate
Note the current group is "Conductor": new objects get the property of this group unless the group is changed

Step 2

→Check Impedance

- Open Group Port Sources
- Right click on GANLIB 1 Edit
- Click "Edit Settings"
- Click "Info"

Comments:

Width=410 yields approx. 50 Ohm with epseff=6.37 -> 2.97mm is a quarter wavelength at the target frequency of 10 GHz

- Close Windows with OK
- Click on GANLIB 2 Delete
- Click on strip line, Open Object

Edit

• Adjust Point 2, x=2800, OK

-

Step 3: Ring

- Click "Create Library Object"
- Select Tab "2D Extruded"
- Select "Ring"

- Left click at x=4000, y=3000
- Set inner radius to e.g. 1000 (will be set later)
- Long left click to use group height thickness
- Click "Edit Settings
- Adjust values: da, db, phi0, phi1
- Close with OK

Library Editor - Ring				?	×
Geometry					
Outer Diameter da>0	da=	2560.0			
Inner Diameter db>=0	db=	2240.0			
Resolution in Degree.	res=	5.0			
Start Angle in Degrees	phi0=	35.0			
End Angle in Degrees	phi1=	325.0			
	Library Editor - Ring Geometry Outer Diameter da>0 Inner Diameter db>=0 Resolution in Degrees Start Angle in Degrees End Angle in Degrees	Library Editor - Ring Geometry Outer Diameter da>0 da= Inner Diameter db>=0 db= Resolution in Degrees phi0= End Angle in Degrees phi1=	Library Editor - RingGeometryOuter Diameter da>0Inner Diameter db>=0Resolution in DegreesStart Angle in DegreesEnd Angle in Degreesphi1=325.0	Library Editor - RingGeometryOuter Diameter da>0da=2560.0 Inner Diameter db>=0db=2240.0Resolution in Degreesres=5.0Start Angle in Degreesphi0=35.0End Angle in Degreesphi1=325.0	Library Editor - Ring ? Geometry Outer Diameter da>0 da= 2560.0 Inner Diameter db>=0 db= 2240.0 Resolution in Degrees phi0= 35.0 Start Angle in Degrees phi1= 325.0

Comments: Ring values are chosen so that impedance is ~70 Ohm and length is half wavelength

Step 4: feed lines

- Zoom in to center
- Click "Create Box"
- Click on edge (x~5200)
- Click on corner
- Long click to use group height
- Adjust value

(to get width of 410 µm)

- Enter 1D Arrow at y=3000*
- Select line
- Click "Copy & Mirror"

* Drag left button starting at x=4500, y=3000, release at x=5000, y=3000

(
+						
\times						
Box Editor			?	×		
General						
Name:	BOX 342					
Group:	Conduc	tor (Gold (cond	uctor))	•		
Assign Heig	ht 🔿 Custom	From Group)			
	x	у	z			
Point 1	5327	0.0				
Point 2	4917.4192	2357.696				
					\sim	
		-			<u>~</u>	

Step 5: SMD Resistor

- Click "Create Library Object"
- Select SMD tab
- Select "SMD Resistor"
- Left click at x=5100, y=3000
- Click "Edit Settings"
- Adjust values:
 Size: SMD0402 [inch]
 Orientation: set "v"
 for vertical orientation
 Resistance: define
 100 Ohm load
 Close with OK

Ð	Create	Library E

Dez-19 © IMST GmbH - All rights reserved

Step 6: Port Setup

- 1. Click "Create Port"
- 2. Click "QTEM Port"
- 3. 1st click at center line start
- 4. 2nd click in wave direction
- 5. OK
- Repeat 1-5 for opposite port
- Click "Port Setup Wizard"
- Select Excitation Tab
- Uncheck Excitation for port 3, OK

🚯 Port Editor

Table Style:	Detail View				
Number 🔺	Excitation	Group	Amplitude	Load Impedance	Current Probe
		Port			
		Conductor (Gold (conductor))			
		Conductor (Gold (conductor))			

Comments:

- With this setting 2 subsequent simulations will be carried out
- 1: Even mode
- 2: Odd mode

Convergence (E-Field)

Convergence (H-Field)

Step 7: Simulation

- Click " Start Simulation"
- OK
- Wait for Finished state of simulations in sub-1 and sub-2

Comments:

- The following will be executed
 - Automatic meshing and saving the input file
 - For each excited port
 - (folders sub-1 and sub-2):
 - Preprocessing (creating simulation files and folders)
 - Statistics and Memory estimation (Simulation Tab, log window)

Empire XPU 8.0 - C:\Users\andreas.wien\Desktop\Tut-home\04 Divider\sim\divid

Simulation Config

Host Setup

- Compilation (creating the source code)
- Running the simulation and displaying the voltage time series
- Postprocessing (DFT, Far field, ...)

Circui

Stop

🕼 Kil 🗳 Close

3D Result

Log Plot

-10

50000

60000

30000

Timesteps

40000

Dez-19 © IMST GmbH - All rights reserved

Step 8: Results

• Select 2D Results – Plot Type Voltage

• 2D Results – Plot Type S-Parameters

Comments:

- Result tabs have predefined Type which may be changed to other results, e.g. time domain current
- Format depends on selected type, e.g. dB or lin
- Right click to open a context menu in Legend or Plot area to adjust file selection or plot range
- By default, first 5 curves in the list will be plotted. Right click at grey legend entry, select "show" to display hidden curve

Step 9: Near field

- Select "3D Results" tab
- Open "Field Monitors" on the left
- Use sliders to adjust animation planes
- Right click on FIELDMON 1 Edit
- Source Type: Manual
- File: sub-2\emvolume_1.dbx
- OK

Comments:

Here, the z-component of the electric field is selected. Results in folder sub-1 refer to the excitation of port P1 (even mode), sub-2 refer to excitation of port P2 (odd mode)

